Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dai-Xi Li, Duan-Jun Xu* and Yuan-Zhi Xu

Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.058$
$w R$ factor $=0.162$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were
automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(8-quinolinolato- $\kappa^{2} N, O$)chromium (III) ethanol solvate

The title chromium(III) complex, $\left[\mathrm{Cr}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, is isomorphous with the manganese(III) compound [Xiong et al. (1995). Acta Cryst. C51, 1978-1980]. Three 8-quinolinolate ligands chelate the $\mathrm{Cr}^{\mathrm{III}}$ atom to form an approximately octahedral coordination geometry. An ethanol solvent molecule hydrogen bonds to the complex with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.758 (5) \AA and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of 167°. The separation distances of 3.426 (19) and 3.368 (4) \AA between parallel quinoline rings suggests the existence of $\pi-\pi$ stacking between neighboring complex molecules.

Comment

As part of a series of investigations on $\pi-\pi$-stacking interactions in metal complexes, several 8 -quinolinolate-metal complexes have been synthesized in the laboratory.

(I)

The structure of the title complex, (I), is shown in Fig. 1. Three 8-quinolinolate ligands chelate to the $\mathrm{Cr}^{\text {III }}$ atom in an octahedral coordination geometry. The planar 8-quinolinolate ligands are almost perpendicular to each other, with dihedral angles of $85.84(10), 85.40(11)$ and $81.91(14)^{\circ}$. The overlapped disposition of neighboring parallel quinoline rings is shown in Fig. 2. The quinoline plane containing atom N21 is separated from the quinoline plane containing $\mathrm{N} 21(-x,-y$, $1-z$) by 3.426 (19) A. Likewise, the plane containing atom N31 and the plane containing $\mathrm{N} 31(-x,-y,-z)$ are separated by 3.368 (4) \AA. These findings strongly suggest the existence of $\pi-\pi$ stacking in the crystal structure (Fig. 2).

The ethanol solvent molecule is hydrogen bonded to the $\mathrm{Cr}^{\text {III }}$ complex, with an $\mathrm{O} 1 \cdots \mathrm{O} 31$ distance of 2.758 (5) \AA and an $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 31$ angle of 167° (Table 2). Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding occurs between atom O 11 and quinoline atoms C15 and C24.

Experimental

The title complex was prepared by refluxing an ethanol solution $(15 \mathrm{ml})$ containing $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.27 \mathrm{~g}, 1 \mathrm{mmol}), 8$-quinolinol $(0.29 \mathrm{~g}$, 2 mmol) and imidazole ($0.14 \mathrm{~g}, 2 \mathrm{mmol}$) for 2 h . The resulting solution was filtered at room temperature. Green single crystals were obtained from the filtrate after 2 weeks.

Received 11 April 2003 Accepted 16 April 2003 Online 30 April 2003

Figure 1
A view of the molecular structure of (I), with 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the hydrogen bond between the complex and the solvent molecule.

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=530.51$
Monoclinic, $P 2_{1} / n$
$a=11.2683$ (11) \AA
$b=13.2572$ (11) \AA
$c=16.8041$ (18) \AA
$\beta=94.783(6)^{\circ}$
$V=2501.6(4) \AA^{3}$
$Z=4$
$D_{x}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8818 reflections
$\theta=2.5-24.5^{\circ}$
$\mu=0.50 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, green
$0.36 \times 0.32 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD
4362 independent reflections
diffractometer
3346 reflections with $I>2 \sigma(I)$
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.84, T_{\text {max }}=0.91$
8913 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0725 P)^{2} \\
&+2.5324 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.162$
$S=1.10$
4362 reflections
334 parameters
H-atom parameters constrained

Figure 2
A packing diagram, showing the $\pi-\pi$ interactions between neighboring quinoline rings.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O} 31$	0.87	1.90	$2.758(5)$	167
C15-H15 \cdots O11	${ }^{\mathrm{i}}$	0.93	2.52	$3.377(5)$
C24-H24 \cdots O11 $^{\mathrm{H}}$	0.93	2.59	$3.401(4)$	153

Symmetry codes: (i) $-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $-x,-y, 1-z$.
The hydroxyl H atom was located in a difference Fourier map, and included in the final cycles of refinement with fixed positional parameters and displacement parameter $U_{\text {iso }}=0.08 \AA^{2}$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and included in the final cycles of refinement as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}$ of the carrier atoms.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (Nos. 29973036 and 20240430654).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (1999). SADABS (Version 2.0), SMART (Version 5.6) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Xiong, R., You, X., Wu, Q. \& Huang, X. (1995). Acta Cryst. C51, 1978-1980.

