Received 11 April 2003

Accepted 16 April 2003

Online 30 April 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dai-Xi Li, Duan-Jun Xu* and Yuan-Zhi Xu

Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.006 Å R factor = 0.058 wR factor = 0.162 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(8-quinolinolato- $\kappa^2 N$,O)chromium(III) ethanol solvate

The title chromium(III) complex, $[Cr(C_9H_6NO)_3]\cdot C_2H_6O$, is isomorphous with the manganese(III) compound [Xiong *et al.* (1995). *Acta Cryst.* C**51**, 1978–1980]. Three 8-quinolinolate ligands chelate the Cr^{III} atom to form an approximately octahedral coordination geometry. An ethanol solvent molecule hydrogen bonds to the complex with an O···O distance of 2.758 (5) Å and an O–H···O angle of 167°. The separation distances of 3.426 (19) and 3.368 (4) Å between parallel quinoline rings suggests the existence of π - π stacking between neighboring complex molecules.

Comment

As part of a series of investigations on π - π -stacking interactions in metal complexes, several 8-quinolinolate-metal complexes have been synthesized in the laboratory.

The structure of the title complex, (I), is shown in Fig. 1. Three 8-quinolinolate ligands chelate to the Cr^{III} atom in an octahedral coordination geometry. The planar 8-quinolinolate ligands are almost perpendicular to each other, with dihedral angles of 85.84 (10), 85.40 (11) and 81.91 (14)°. The overlapped disposition of neighboring parallel quinoline rings is shown in Fig. 2. The quinoline plane containing atom N21 is separated from the quinoline plane containing N21(-x, -y,1 - z) by 3.426 (19) Å. Likewise, the plane containing atom N31 and the plane containing N31(-x, -y, -z) are separated by 3.368 (4) Å. These findings strongly suggest the existence of π - π stacking in the crystal structure (Fig. 2).

The ethanol solvent molecule is hydrogen bonded to the Cr^{III} complex, with an $O1\cdots O31$ distance of 2.758 (5) Å and an $O1-H1\cdots O31$ angle of 167° (Table 2). Weak $C-H\cdots O$ hydrogen bonding occurs between atom O11 and quinoline atoms C15 and C24.

Experimental

The title complex was prepared by refluxing an ethanol solution (15 ml) containing $CrCl_3 \cdot 6H_2O$ (0.27 g, 1 mmol), 8-quinolinol (0.29 g, 2 mmol) and imidazole (0.14 g, 2 mmol) for 2 h. The resulting solution was filtered at room temperature. Green single crystals were obtained from the filtrate after 2 weeks.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the molecular structure of (I), with 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the hydrogen bond between the complex and the solvent molecule.

Crystal data

-	
$[Cr(C_9H_6NO)_3] \cdot C_2H_6O$ $M_r = 530.51$ Monoclinic, $P2_1/n$ a = 11.2683 (11) Å b = 13.2572 (11) Å c = 16.8041 (18) Å $\beta = 94.783 (6)^{\circ}$ $V = 2501.6 (4) \text{ Å}^3$ Z = 4	$D_x = 1.409 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 8818 reflections $\theta = 2.5-24.5^{\circ}$ $\mu = 0.50 \text{ mm}^{-1}$ T = 298 (2) K Prism, green $0.36 \times 0.32 \times 0.20 \text{ mm}$
Data collection Bruker SMART CCD diffractometer ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999) $T_{min} = 0.84, T_{max} = 0.91$ 8913 measured reflections	4362 independent reflections 3346 reflections with $I > 2\sigma(R_{int} = 0.039)$ $\theta_{max} = 25.0^{\circ}$ $h = -13 \rightarrow 8$ $k = -13 \rightarrow 15$ $l = -19 \rightarrow 19$
Refinement Refinement on F^2 $P[F^2 > 2\sigma(F^2)] = 0.058$	$w = 1/[\sigma^2(F_o^2) + (0.0725P)^2 + 2.5234P]$

$R[F^2 > 2\sigma(F^2)] = 0.058$	+ 2.5324P]
$wR(F^2) = 0.162$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
4362 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
334 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å).

Cr-O21	1.950 (3)	Cr-N31	2.053 (3)
Cr-O11	1.974 (3)	Cr-N11	2.068 (3)
Cr-O31	1.975 (2)	Cr-N21	2.072 (3)

A packing diagram, showing the π - π interactions between neighboring quinoline rings.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···O31	0.87	1.90	2.758 (5)	167
$C15-H15\cdots O11^{i}$	0.93	2.52	3.377 (5)	153
$C24-H24\cdots O11^{ii}$	0.93	2.59	3.401 (4)	146
	1 1			

Symmetry codes: (i) $-\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) -x, -y, 1 - z.

The hydroxyl H atom was located in a difference Fourier map, and included in the final cycles of refinement with fixed positional parameters and displacement parameter $U_{iso} = 0.08 \text{ Å}^2$. Other H atoms were placed in calculated positions, with C-H = 0.93-0.97 Å, and included in the final cycles of refinement as riding, with $U_{iso}(H) =$ $1.2U_{\rm eq}$ or $1.5U_{\rm eq}$ of the carrier atoms.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (Nos. 29973036 and 20240430654).

References

 $l > 2\sigma(I)$

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Bruker (1999). SADABS (Version 2.0), SMART (Version 5.6) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Xiong, R., You, X., Wu, Q. & Huang, X. (1995). Acta Cryst. C51, 1978-1980.